English

名称描述内容
什么是纳米技术?
来源: | 作者:gzkefu | 发布时间: 2015-04-17 | 7949 次浏览 | 分享到:

纳米技术

英语:Nanotechnology)是一门应用科学,其目的在于研究于纳米规模时,物质和设备的设计方法、组成、特性以及应用。纳米科技是许多如生物物理化学等科学领域在技术上的次级分类,美国国家纳米科技启动计划将其定义为“1至100纳米尺寸尤其是现存科技在纳米规模时的延伸”。纳米科技的世界为原子分子高分子量子点和高分子集合,并且被表面效应所掌控,如范德瓦耳斯力氢键电荷离子键共价键疏水性亲水性量子穿隧效应等,而惯性湍流巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。

微小性的持续探究使得新的工具诞生,如原子力显微镜扫描隧道显微镜等。结合如电子束微影之类的精确程序,这些设备将使我们可以精密地运作并生成纳米结构。纳米材质,不论是由上至下制成(将块材缩至纳米尺度,主要方法是从块材开始通过切割蚀刻研磨等办法得到尽可能小的形状(比如超精度加工,难度在于得到的微小结构必须精确)。或由下至上制成(由一颗颗原子或分子来组成较大的结构,主要办法有化学合成自组装和定点组装(positional assembly)。难度在于宏观上要达到高效稳定的质量,都不只是进一步的微小化而已。物体内电子的能量量子化也开始对材质的性质有影响,称为量子尺度效应,描述物质内电子在尺度剧减后的物理性质。这一效应不是因为尺度由巨观变成微观而产生的,但它确实在纳米尺度时占了很重要的地位。

纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可能可以有许多重要的应用,也可以制造许多有趣的材质。

应用技术

一、纳米晶体(nanocrystalline materials)

当物质的微结构微小化时,表面原子与内部材料原子的个数比例显著上升,界面之原子行为对物质性质便有决定性影响。例如纳米金属结晶颗粒,展现出较佳之强度、硬度、磁特性、表面催化性等;而具纳米结晶之陶瓷材料相较于一般陶瓷材料,则具较高之延展性、较不易脆裂之特性。纳米结晶金属由于其强度之增加,相当大之应用机会在于汽车业航太业建筑业等之结构材料,例如Toyota汽车已使用新型纳米结晶钢材于其汽车产品上[来源请求];这方面之应用,纳米复合材料是另一竞争者,但于某些用途上,如汽车引擎,纳米结晶金属材料仍保有其优越性。纳米结晶材料薄膜可提高表面之硬度、降低磨擦、提高耐热性、耐化学腐蚀性等,可应用于汽车、航空业等之机械系统。在生物医学方面,纳米结晶银有抗菌作用,而纳米结晶钛则可应用于人工关节


二、纳米粉体

纳米粉体是纳米材料中种类最繁多且应用最广泛之一类。最常见的陶瓷纳米粉体(ceramic nanoparticles)可再分为二类:(一)金属氧化物如TiO2, ZnO等(二)硅酸盐类,通常为纳米尺度之黏土薄片。纳米粉体的制程,包括固相机械研磨法、液相沉淀法、溶胶-凝胶法、化学气相沉积法等,不同之方法各有其优缺点及适用范围。此外,纳米粉体之表面覆膜与修饰,亦常是对粉体后段应用必要的处理步骤。如高浓度CO净化触媒-Au/TiO2,即将~10nm的金均匀分布在TiO2载体上,以发挥其净化功能,其中TiO2载体为溶胶-凝胶法制得之纳米孔隙材料,以具备纳米尺寸空间容纳金纳米颗粒。

  • 复合材料:纳米粉体最大之应用之一,在于纳米高分子复合材料之开发。由于无机分散相表面积与高分子间之作用力,使复合材料之刚性大幅提升,透气性、热膨胀性下降,耐化学腐蚀,及保有透明性等之优点,可广泛应用于一般民生工业,如家电器材、汽车零组件、输送导管等耐磨结构材料上;在包装材料上之应用,如保鲜膜、饮料瓶,则可利用其耐热性、高阻气性及透明等优点。Caly/Nylon之复合材料,由于分散均匀,只要添加3~4%,即可将Nylon之熔点从70℃提升至150℃,且加工性非常良好[来源请求]

  • 涂布:纳米粉体涂布具增强表面硬度、抗磨、透明等特性,已应用于建材太阳眼镜镜片上,Kodak正发展以纳米粉体涂布制造防刮之x-ray底片。此外,亦有利用纳米粉体涂布光学、耐腐蚀、绝热特性之应用开发。磁性纳米粉体涂布则可应用于资料储存方面[来源请求]

  • 医学药物:经表面修饰之纳米粉体可应用于药物输送、纳米银微粒具有抗菌功效、氧化锌则具杀霉作用。TiO2与ZnO对UV吸收有相当好之功效,可应用于防晒油等美容产品[来源请求]

  • 其他:纳米粉体之高表面积,可利用工业上之催化反应;用于燃料电池上,可增加其反应速率,提高效能。此外,纳米颜料的开发、使用金属纳米粉体印制电子电路、及磁性纳米粉体于半导体与医学核磁共振影像上之使用,均为纳米粉体之应用机会[来源请求]



三、纳米孔隙材料nanoporous materials)

此类材料指孔隙尺寸小于100纳米之多孔隙材料,包括自然界中早已存在之生物膜与沸石,其高表面积(通常高达~102m2/g),使之具高催化及吸附效应。纳米孔隙材料可由溶胶-凝胶法、微影蚀刻、离子束等方法制得;纳米孔隙薄膜经镀膜处理,可得纳米细管结构。纳米孔隙材料可用开发改良催化剂,应用于石化工业等。利用孔隙结构,在薄膜过滤系统纯化/分离、药物输送植入装置、及基因定序、医学检测等,纳米孔隙材料均有相当大之应用潜能。气胶为质轻之良好绝热材料;纳米孔隙薄膜可作为半导体业中之低介电材料;纳米多孔硅特殊的发光性质,可作为固态激光之材料;纳米多孔碳则具高电容特性,可应用于如手提电脑移动电话,乃至电动车等电池之开发。


四、纳米纤维纳米线(nanofibers & nanowires)

纳米纤维在此指相对较短之纤维,包括碳纤丝(carbon fibrils)、人造高分子纤维、及氧化铝纤维等;静电纺丝是制造人造高分子纳米纤维之方法,可结合纳米微粒或纳米管等材料于纤维中。工研院化学工业研究所正开发之电纺纳米纤维,其尺度约为人发的1/100。纳米缆线则倾向为无机材质,包括金属、半导体(如硅、锗)、及一些有机高分子,主要应用于电子工程。其制造主要有三个方式:(一)微影蚀刻或拓印。(二)化学成长。(三)自组装成长。纳米缆线之电子传递行为并不遵循古典电学,例如其电阻为一定值并不随长度改变;应用于建构复杂之电路系统时,须挑战之困难点在于缆线间之连结性。纳米纤维可用于复合材料与表面涂布,达补强作用。Hyperion Catalysis International正开发利用纳米碳纤丝,制造导电塑胶及薄膜,可应用在汽车之静电涂料或电器设备之静电消除;与传统导电塑胶材料比较,达同样导电效果所须添加之碳纤丝量较低,且材料表面亦较平滑[来源请求]。电纺纳米纤维具强度提升与高表面积等特性,适合作为纳米粉体于催化应用上之反应床。纳米纤维可制成抗化学品、防水透气、防污等特殊性能布料,在纺织服装业上有广大的市场;Nano-Tex公司已有开发之商业化产品问世。纳米纤维可用为过滤材料及医学组织工程之支架材料;在药物输送之媒介、感测器、纳米电机等领域,亦具应用潜力;此外,利用其高表面积,可用以开发可挠式光伏特膜片,并进一步制成可穿戴之太阳能电池。纳米缆线于化学与生物感测器上之应用,可预期近期商业化产品之出现;其他纳米缆线的应用,包括于气体分离与微分析、便携式电源供应器之催化剂、陶瓷微机电系统、幅射线侦测器、发光二极管、激光、可调式微波装置等。由于缆线间连结性之挑战,目前纳米缆线于纳米电子工程之应用,仍处实验室研发阶段,商业化为长期化之目标。


五、纳米碳管

纳米碳管(carbon nanotube,CNT)是在1991年由日本NEC公司Sumio Iijima,在以穿透式电子显微镜观察碳的团簇(cluster)时意外发现,为石墨平面卷曲而成之管状材料,有单层(single-walled)与多重层(565++6)两种结构。纳米碳管的制程方式包括电弧放电、激光蒸发/剥离、化学气相沉积法、气相成长、电解及火焰生成法等[来源请求]。纳米碳管具许多特殊性质,如高张力强度(tensile strength ~100Gpa)、优良之热导性、及室温超导性,其导电性则随不同的卷曲方式而变,可为纳米导线或是纳米半导体;研究并显示纳米碳管可吸附氢气,惟其机制与吸附效能目前仍无定论。纳米碳管由于其许多特殊的性质,为目前最热门的材料之一,其应用可略分为几类:


  • 结构材料:由于纳米碳管之优异强度,高强度-重量比(strength-to-weight ratio)之新型复合材料之开发,可应用于汽车、航太、建筑业等,在此方面的关键点为成本考量与均匀品质纳米碳管之量产技术。纳米碳管可用以制造导电塑胶及高效率幅射屏蔽复材,在纺织工业方面,亦具应用潜力。此外,若可克服技术及成本问题,制成纳米碳管电缆,可兼具纳米碳管于结构强度与导电性之优点,将为能源运输之一大突破。


  • 电子工程:纳米碳管在量子效应下展现之电学性质,制成电子工程中之逻辑元件与内存,预期可巨幅提升电脑之速度与资料储存密度,目前最大的碍障在于成本价格太高及纳米碳管连结技术上之困难。Nantero公司已宣称将于3-5年内推出基于纳米碳管之1 terabyte NRAM(non-volatile RAM)[来源请求]。此外,纳米碳管之高导热性,可以应用在纳米电路中高热量之散布。

  • 显示器:碳纳米管具有低的导通电场、高发射电流密度以及高稳定性,极适用于场发射器。目前场发射显示器技术最广受注目之开发为平面显示器,已有不少企业,如日本NEC、韩国三星公司[来源请求]。此外,碳纳米管阵列之场发射可应用于电子束微影蚀刻技术,可突破此技术于平行量产上之瓶颈。

  • 燃料电池:纳米碳管具吸附氢气碳氢化合物之功能,可以应用在航太与汽车工业上燃料电池的氢气储存槽。

  • 其他:纳米碳管具弹性且细长的优点,可作为原子力显微镜或扫描隧道显微镜之探针,大幅提高分辨率。碳米碳管的其他潜在应用,包括太阳能电池效能之提升、感测器[5]之开发,及吸收式电磁遮蔽应用。


衍生产品

机器人

纳米机器人是根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”,也称分子机器人;而纳米机器人的研发已成为当今科技的前沿热点。

2005年,不少国家纷纷制定相关战略或者计划,投入巨资抢占纳米机器人这种新科技的战略高地。《机器人时代》月刊日前指出:纳米机器人潜在用途十分广泛,其中特别重要的就是应用于医疗和军事领域。

每一种新科技的出现,似乎都包涵着无限可能。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。中国著名学者周海中教授在1990年发表的《论机器人》一文中就预言:到21世纪中叶,纳米机器人将彻底改变人类的劳动和生活方式。


雨衣伞

纳米雨衣伞是雨伞与雨衣的结合体,纳米雨伞收伞有三折伞和直杆伞的收伞形态(简单说,收伞时有长短两种选择)。纳米雨衣可由纳米雨伞转变而成,纳米雨衣又不同于一般的雨衣,因为纳米雨衣可以保证从头到脚绝对不湿。因为纳米材料,所以这雨伞可以一甩即干,雨伞转变为雨衣后,这雨衣也只需穿着时轻轻一跳也即可全干。



防水材料

2014年8月4日,澳大利亚运用新发明的布料,制成一款具有开创性的T恤衫,不管人们怎样尝试着浸湿它,此T恤都能保持良好的防水性能。

这件叫做“骑士”(The Cavalier)的白色T恤是百分之百棉质的。虽然表面看起来平淡无奇,但是其布料运用“疏水”纳米技术应用编织而成,使得这件T恤能够有效防止大部分液体和污渍的浸入。这种T恤可以用机器清洗,其防水功能最多可承受80次清洗。它的布料有天然自净功能,任何附着在上的污渍都能用水擦洗或冲干净。

和其他含有化学物质的防水应用不同,T恤仿照的是荷叶的自然疏水特点。此布料的发明对于餐馆和咖啡厅来说可能具有革命性的影响。此外,这种布料还可以运用在医疗行业或医院等地。

展趋势

高级纳米技术,有时被称为分子制造,用于描述分子尺度上的纳米工程系统(纳米机器)。无数例子证明,亿万年的进化能够产生复杂的、随机优化的生物机器。在纳米领域中,我们希望使用仿生学的方法找到制造纳米机器的捷径。然而,K Eric Drexler和其他研究者提出:高级纳米技术虽然最初会使用仿生学辅助手段,最终可能会建立在机械工程的原理上。


美国

美国国家科学委员会(National Science Board)于西元2003年底批准“国家纳米科技基础结构网络计划”(National Science Board Approves Award for a National Nanotechnology Infrastructure Network,简称NNIN),将由美国13所大学共同建构支持全国纳米科技与教育的网络体系。该计划为期5年,于公元2004年一月开始执行,将提供整体性的全国性使用技能以支持纳米尺度科学工程与技术的研究与教育工作。预估5年间至少投资700亿美元的研究经费。计划目的不仅在提供美国研究人员顶尖的实验仪器与设备,并能训练出一批专精于最先进纳米科技的研究人员。


1.美国发展最新纳米细胞制造技术

纳米技术可制造出粒子小于人类血管大小的物体,美国国家标准与科技协会(NIST)指出已研究出一种生产一致的,且能够自行组合的纳米细胞(Nanocells)的方法,以应用在封装压缩药物的治疗工作上。这种技术当前可被运用在药物的包装技术上,可以更精确地确保药物的用量,未来将运用在癌症化学治疗的相关技术上作更进一步的研究。

纳米计划是公元2005年联邦跨部会研发预算的主轴,达9.8亿美元。


2.DNA检测芯片的进展

公元2004年一月,美国HP正式对外发表其用来快速进行DNA检测的纳米级芯片。2004年在DNA检测上采以光学原理为基础的“基因微芯片法”(DNA microarrays)繁复的检测步骤,HP团队改由将此繁复步骤交由电路芯片处理;制作上,DNA检测芯片的传感元件是一条利用电子束蚀刻法(electron-beam lithography)与反应性离子蚀刻法(reactive-ion etching)所制成粗细约50纳米的纳米线。然就商业上考量,成果却过于高昂,因此研究团队正发展利用较便宜的光学蚀刻法(optical lithography)以制成DNA检测芯片元件的技术。


3.地下水污染改善之研究

地下水污染是现代被广泛讨论的一项重大议题,现代,美国发表了一种纳米微粒(nanoparticles)技术,在此微粒中心为铁芯(iron)而其外则由多层聚合物加以包覆,其中,内层是由防水性极佳的复合甲基丙烯酸甲脂(poly methl methacrylate;PMMA)包覆,而外层则由亲水的sulphonated polystyrene进行包覆。由于亲水性外层使纳米微粒溶于水,内层防水层则能吸引污染源三氯乙烯(trichloroethylene)。纳米微粒中的铁芯使得三氯乙烯产生分裂,进而使得此项污染源逐渐分裂成无毒的物质。


4.启动癌症纳米科技计划

为广泛将纳米科技、癌症研究与分子生物医学相互结合,美国国家癌症中心(NCI)提出了癌症纳米科技计划(Cancer Nanotechnology Plan),并将透过院外计划、院内计划与纳米科技标准实验室等三方面进行跨领域工作。计划设定了六个挑战:

预防与控制癌症:发展能投递抗癌药物及多重抗癌疫苗的纳米级设备。

早期发现与蛋白质学:发展植入式早期侦测癌症生物标记的设备,并发展能收集大量生物标记进行大量分析的平台性装置。

影像诊断:发展可提高分辨率到可辨识单独癌细胞的影像装置,以及将一个肿瘤内部不同组织来源的细胞加以区分的纳米装置。

多功能治疗设备:开发兼具诊断与治疗的纳米装置。

癌症照护与生活品质提升:开发改善慢性癌症所引发的疼痛、沮丧、恶心等症状,并提供理想性投药装置。

跨领域训练:训练熟悉癌症生物学与纳米科技的新一代研究人员。


中国

1.“中国实验室国家认可委员会”是负责实验室和检查机构认可及相关工作的认可机构,为规范纳米产品市场、推动制定相关纳米材料及产品的标准,“国家纳米科学中心”和“中国实验室国家认可委员会”会商多次,联合成立“纳米技术专门委员会”,挂靠在“国家纳米科学中心”。

2. 中国政府透过中国科学院主导众多纳米科技研发计划,多数强调半导体制造技术和发展以纳米科技为基础的电子元件,另一是利用纳米材料保存考古文物。

已成功发展出的产品包括新式冷气机,其特点为利用创新的纳米材质。另估计约有两百家企业积极从事纳米科技产品的商业化。